Poultney & al., 2024

Importance of overlooked crop biomass components in sugarcane nitrogen nutrition studieseld experiments: Dynamics and drivers of crop yields

Poultney & al., Nitrogen 2024, 5, 62-78

https://doi.org/10.3390/nitrogen5010005

Abstract :

Sugarcane crops typically have a high fertiliser nitrogen (N) input, with low N recovery efficiencies. Nitrogen is essential to crop productivity, but excess application can have negative environmental consequences. Despite the importance of coordinating N fertiliser input with crop N requirements, certain components of the sugarcane plant are typically not considered when evaluating N nutrition. The objective of this study was to establish which sugarcane crop components should be included in these evaluations given their impact on N mass accumulation and on fertiliser N recovery efficiencies. The respective biomass, N mass, and fertiliser N recovery efficiency were evaluated for sugarcane shoots, tillers, strawfall, root, and stool components over two experimental years, for fertilised (urea) and unfertilised treatments. The root component comprised, respectively, 57–65% of the aboveground N mass of fertilised sugarcane, and 74–104% of the unfertilised sugarcane. The sugarcane N requirements and uptake were shown to be more progressive over the growth-cycle when considering the strawfall and tiller components. This study emphasises the importance of evaluating belowground biomass in sugarcane N studies, and suggests that the tiller and strawfall components should also be considered when evaluating the evolution of N mass and fertiliser N recovery efficiency.

Keywords : nitrogen; N-fertiliser recovery efficiency; sugarcane; roots; strawfall; tillers