

SOERE PRO Assemblée Générale

3 décembre 2021

Rennes – UMR SAS & visioconférence

How various types of organic waste sustain crop yields and drives C, N, P, and K dynamics in calcareous soil.

Haotian Chen^a, Florent Levavasseur^a, Denis Montenach^b, Marc Lollier^c, Christian Morel^d, Sabine Houot^a

^a INRAE, AgroParisTech, Université Paris-Saclay, UMR ECOSYS, 78850 Thiverval-Grignon, France
^b INRAE, UE 0871 Service d'expérimentation Agronomique et Viticole, Colmar, France
^c LVBE, EA3991, Université de Haute Alsace, 33 rue de Herrlisheim, 68000 Colmar, France.
^d INRAE, Bordeaux Sciences Agro, UMR1391 ISPA, F-33882, Villenave d'Ornon Cedex, France

Diversity of *organic wastes (OWs)*

Origins of OWs

OWs are organic waste products can be used in agriculture through applications on cropped soils either directly or after treatments.

From agricultures

Manure and effluents

From cities

Greenwaste & Household biowaste

Treatments of OWs

(i) Biological treatments, composting/anaerobic digestion(ii) Physical or chemical treatments as drying or liming

Reference: Marmo et al., 2004; Noirot-Cosson, 2017

Fig.1 Characteristic of OW applied in Colmar

From industries

Sewage sludge

Diverse effects of organic wastes

Diverse effects on yields

Fig.3 Percent changes in SOC over the whole duration

Fig.2 Percent changes in plant yield over the whole duration

Reference: Chen et al., 2018; Luo et al., 2018

Test the effects of OWs

Best method to test the effects of OWPs

- long-term cropping experiments (LTEs)

- Effects on crop and soil can last for several years
- Effects may could be detected after years

OW added in excess to strengthen the effects
Crop residues removed to strengthen the effects

Tew experiments in calcareous soils

Objectives

- 1) Study the effects of repeated applications of raw or composted OW on crops and C, N, P and K dynamics in a calcareous soil
- 2) Identify the characteristics of OW linked to the variability of OW effects

Materials and Methods

- Soil, OW and crops are sampled regularly
- Analyzed the data from 2000 to 2018
- Anova analyses to identify significant differences between treatments
- **Tested the relationship between OWs** input and changes in soils characteristics

170 kg N/ha every two years

Fig.5 Succession of crops and OWP in Colmar

Digestates application; Increased OW rate in the N- experiment

Yield:

Fig.6 Cumulative harvested biomass and aerial residues biomass of barley, sugarbeet, wheat and maize.

- OW application increased the grain biomass of maize, wheat and barley in comparison to no fertilization (CON_N-)
- OWs+N sustained crops yield to the levels of mineral fertilizer (CON_N+)
- N or OWs had no effect on Harvest index
- Digestates could maintain crop yield compared (CON_N+)

N concentration in crops harvests:

- OWs had no side effect on grain N concentration
- OWs+N increased the N content compared with OWs

GWS BIO

Potential of digestes to increased N content

Fig.7 Concentrations of N in barley, maize, sugarbeet and wheat grain from 2001–2018 under the 12 treatments.

Carbon change:

Fig 8. The total C input and total PROC input from different sources

N: Without mineral N fertilization N: Optimal mineral N fertilization N: Optimal mineral N fertilization H: Optimal mineral N fertiliza

- Crop residues C input are higher than OWs C input
- OW application maintain C stocks in comparison to the control treatments (decreasing C stocks)
- C stocks changes linearly correlated with C (PROC) input

Fig 10. Relationship of Cumulative PROC VS C change

Olsen-P dynamics :

Fig.11 Cumulative Olsen-P stock and budget.

Olsen P dynamics depend on P input and OW types in calcareous soils

Fig.12 Relationship between cumulative Olsen-P stock and budget

Surplus of +100 kg P ha⁻¹:

GWS/SLU : raised 6/8 kg Olsen-P ha⁻¹ BIO: decreased 8 kg Olsen-P ha⁻¹

Exchangeable-K dynamics :

Exchangeable K dynamics depend on K input and OW types in calcareous soils

Fig.14 Relationship between cumulative Exchangeable-K stock and budget

Surplus of +100 kg P ha⁻¹ :

FYM/FYMC: raised 20/21 kg Exchangeable-K ha⁻¹ GWS: decreased 60 kg Exchangeable-K ha⁻¹

Soil mineral N stocks (in early spring):

	N+ expe	riment			N- experiment
	I+ experiment he N- experiment.				
	OW	Mineral fertilizer saved (kg yr ⁻¹ ha ⁻¹)		NFRV	
	0₩	N	Р	K	(%)
	SLU	57.3	23.1	5.7	58
	GWS	17.6	23.1	16.2	30
	BIO	22.4	16.1	26.7	21
	FYM	27.4	18.4	30.5	35
	FYMC	18.8	17.7	30.5	32
	Digestate	-	-	-	69

SLU showed the highest N supply and saved the most N fertilizer.

Soil mineral N stocks (in late autumn):

1st year after applied:

Fig.16. SMN stocks in late autumn

OWs did not increased the N leaching potential

Conclusions

	OW	OWs+N	
Yields	Increased crops yield compared with unfertilized control (CON_N-)	Sustain crops yield to the levels of mineral fertilizer control (CON_N+)	
	No side effect	Increased compared with OW	
Crops N content	Digestes has potential to increased Crops N content		
SOC stocks	Increase SOC content (except SLU)	increase SOC content (except SLU)	
P & K dynamics	Depended on the kinds of OWs	Depended on the kinds of OWs	
Fortilizor coving 9	SLU save the most N fertilizer;	NFRV: Digestate> SLU > FYM > FYMC > GWS > BIO	
Replacement	SLU & GWS save the most P fertilizer ,		
	FYM & FYMC save the largest K fertilizer		
N leaching	Did not increase	Did not increase	

Thanks for your attention!

Merci beaucoup!