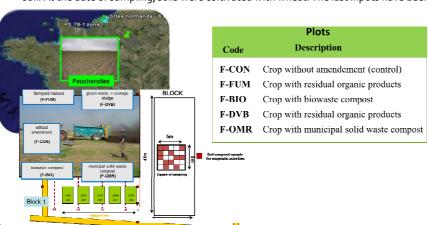


Effect of organic amendments on soil enzymatic activities. Results of the French "Bioindicator program"

LAURENT Nadia¹, <u>RIAH-ANGLET Wassila¹</u>, TRAP Jean¹, LEGRAS Marc¹, CHEVIRON Nathalie², MOUGIN Christian², CRIQUET Steven³, HOUOT Sabine⁴, BISPO Antonio⁵, PERES Guenola⁶, VIAN Jean François⁷, LAVAL Karine¹, TRINSOUTROT-GATTIN Isabelle¹

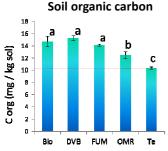

1: Unité AGHYLE, UniLaSalle, 3 Rue du Tronquet, 76134 Mont Saint Aignan. France, 2: Unité PESSAC, INRA de Versailles-Grignon Route de St-Cyr, 78026 Versailles. France, 3: IMEP UMR CNRS 6116 case 452 Marseille Cedex 20. France, 4: UMR Environnement et Grandes Cultures, INRA de Versailles-Grignon Route de St-Cyr, 78026 Versailles. France, 5: ADEME, 20 avenue du Grésillé, B.P 90 406, 49 004 ANGERS cedex 01. France, 6: University Rennes 1, UMR CNRS Ecobio 35380 Paimpont. France, 7: ISARA-Lyon, 23 rue Jean Baldassini, 69364 Lyon cedex 7. France

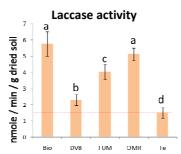
INTRODUCTION -

- ✓ The available indicators to evaluate the soil state are essentially based on physico-chemical parameters, however these parameters are not always representative of soil biological functioning.
- √ The aim of this work is to evaluate the potential of soil enzyme activities as suitable indicators of soil state according to organic amendment inputs?

MATERIELS AND METHODS

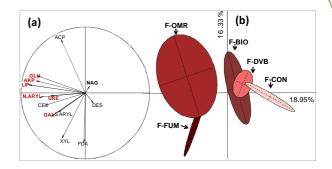
1.Site selection: QualiAgro-Feucherolles site is located in north-western of France (oceanic climate) including 5 plots with different organic inputs in soil. At the date of sampling, soils were cultivated with wheat. The last inputs have been made 18 months ago the sampling date.




2. Enzymes activities assays: 13 enzymes activities were determined on fresh sieved (<2 mm) soil

Enzymes Co	des Re	ferences
Dehydrogenase	DEH	Schaefer et al, 1963
Fluorescein diacetate	FDA	Adam & Duncan, 2001
Lipase	LIP	Gupta et al, 2002
Cellulase	CEL	Trap et al, 2012
Galactosidase	GAL	Eivazi & Tabatabai, 1988
N-acetyl glucosaminidase	NAG	Trap et al, 2012
Xylanase	XYL	Schinner & von Mersi, 1990
Arylsulfatase	ARYLS	Tabatabai & Bremner, 1970
β-glucosidase	GLU	Eivazi & Tabatabai, 1988
Urease	URE	Sinsabaugh et al, 2000
Arylamidase	ARYLN	Martinez &Tabatabai, 2000
Acid phosphatase	ACP	Trap et al, 2012
Alkaline phosphatase	AKP	Trap et al, 2012

RESULTS & DISCUSSION


Do enzyme activities revealed changes in the biological functioning of soils caused by organic amendments inputs?

Different superscripts [a, b, c] indicate significant differences (p < 0.05 or less) between inputs

- The addition of organic amendments for 10 years induced the increase of soil organic carbon content plots enriched with organic amendment regarding the control.
- ✓ The variation pattern of laccase activity is different from those observed for soil organic carbon content.

Principal component analysis (PCA) of enzyme activities from nonamended and amended soils. (a) Correlation circle of enzymatic activities, (b) Factorial projection of axis 1-2 of plots

AKP, URE, ARYLN, GAL, NAG, β-GLU and LIP enzymes activities revealed significant differences for plots enriched with organic amendment regarding the control.

These results suggested that enzyme activities in soil could be related to the biochemical quality of organic amendments inputs

· CONCLUSIONS ·

- √ These results suggest also that soil organic carbon content affect soil biodiversity and function and consequently ecosystem services.
- ✓ Several enzyme activities were sensitive to soil organic carbon content, and they are probably indicators of carbon quality in soil

E-mail address: wassila.riah-anglet@unilasalle.fr

Corresponding author phone: (33)+232829179, fax (33)+235052740

