

Soil physical and hydrological properties as affected by long-term addition of various organic amendments Marie Eden^{1,2}, Jörg Völkel², Vincent Mercier¹, Christophe Labat¹, Sabine Houot¹

Introduction

Recycled organic wastes, like composts or manures, are used as amendments in agriculture.

> Physicochemical soil properties are affected by quantity and quality of exogenous organic matter (EOM). Soils with increased organic carbon (OC) content generally display lower bulk densities (BD) / higher porosity

and higher water holding capacities (WHC) (*Khaleel et al., 1981*).

> The amount of plant available water (PAW) may be influenced (Foley & Cooperband, 2002).

> Plastic and liquid limit (PL & LL, driven by clay & OC content) indicate water contents where soil consistency changes (*Atterberg*, 1911).

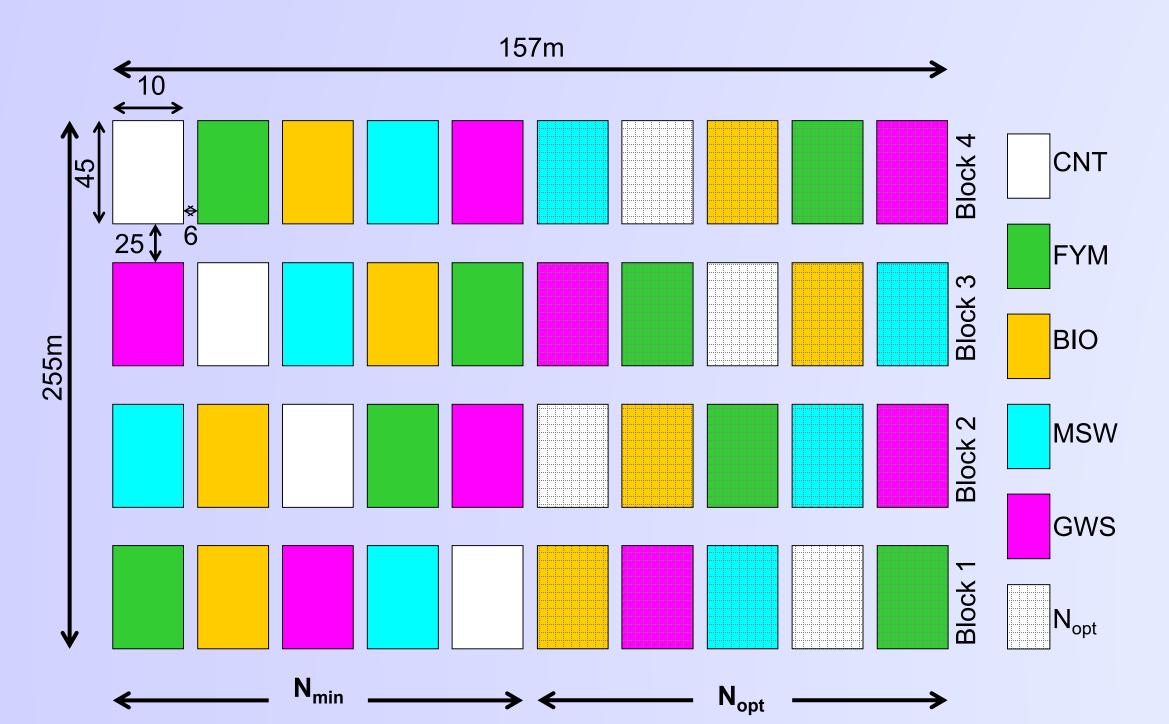


Fig. 1: Layout of Qualiagro; CNT = control, FYM = manure, BIO = biowaste compost, MSW = municipal solid waste compost, GWS = green waste and sewage sludge compost, N_{min} = mineral N at min. rate, N_{opt} = mineral N at opt. rate.

Materials & Methods

Qualiagro site (Fig. 1)

>Experiment on recycled organic wastes, near Paris, FR since 1998 (INRA - Veolia collaboration). > The soil is a loess-derived silt loam (topsoil: 787 g/kg silt, 152 g/kg clay). >40 plots with 3 composts, manure and a control at 2 levels of N. >Amendments (~4 tC/ha) are applied every other year (Fig. 2). > Topsoil OC initially at 10.5 g/kg.

Sampling March 2013

➤3 undisturbed cores (50 cm³) per plot for water retention. >Bulk soil for additional soil physical measurements, e.g. plasticity. **Pedotransfer functions (PTFs)** >PTFs (Rawls et al., 2003) were used to predict water contents at field

capacity (FC), wilting point (WP) and plant available water (PAW). Workflow Fig. 3

field e organ aliagro ation of the at the Quá n fall 2006. pplica ients ent in Fig. 2: amend experin ¹INRA-AgroParisTech, UMR-EGC Sol, FR & ²TU München, Geomorphology & Soil Science, DE (marie.eden@tum.de)

Table 2: Field capacity, wilting and plant available water: modelled and measured (cm ³ /cm ³); ^p =predicted (PTFs), ^m =measured.								
Soil	FC ^p	WP ^p	PAW ^p	FCa ^m	FCb ^m	WP ^m	PAW ^m	PAW ^m
	pF2.5	pF4.2		pF2	pF2.5	pF4.2	FCa-WP	FCb-WP
CNT N _{min}	0.331	0.107	0.224	$0.341 \pm 0.00.1$	$0.333 \pm 0.00.1$	0.071	0.270	0.262
CNT N _{opt}	0.334	0.108	0.226	0.366-0.00.1	0.355+0.00.1	0.071	0.295	0.284
MSW N _{opt}	0.341	0.110	0.232	0.347±0.00.1	0.333±0.00.1	0.073	0.275	0.260
FYM N _{opt}	0.346	0.111	0.235	$0.357{\scriptstyle\pm0.00.4}$	$0.342{\scriptstyle\pm0.00.4}$	0.078	0.279	0.264
BIO N _{opt}	0.349	0.112	0.237	$0.374{\scriptstyle\pm0.00.3}$	$0.354{\scriptstyle\pm0.00.3}$	0.079	0.296	0.275
GWS N _{opt}	0.350	0.112	0.238	$0.389{\scriptstyle\pm0.00.2}$	0.372±0.00.2	0.077	0.312 🕇	0.295

Effect of EOM on plant available water (PAW)	CNT
>OC-induced aggregation (increases porosity) and increased surface	>CN
area increase WHC at FC and WP, respectively.	>CN
Based on texture and OC, FC and WP were predicted with PTFs;	high
resulting PAW increases with OC content (Table 2).	≻GV
Measured values differed from predictions especially at the WP and	MSV

	OC	Total	BD	PL	LL	PI
Soil	2011	porosity	2013	2013	2013	(=LL-PL)
	g/kg	cm ³ /cm ³	g/cm ³	W	t%	%
CNT N _{min}	9.4	0.39	1.42	25.0	32.0	7.1
CNT N _{opt}	10.4 ^d	0.41	1.41	25.3 ^b	31.8 ^b	6.6
MSW N _{opt}	12.8 ^c	0.41	1.30	26.8 ^{ab}	35.6 ^a	7.3
FYM N _{opt}	14.4 ^b	0.41	1.31	27.9 ^a	35.2 ^a	8.8
BIO N _{opt}	15.2 ^a	0.44	1.30	27.1 ^{ab}	34.8 ^a	6.7
GWS N _{opt}	15.6ª	0.45	1.27	28.2 ^a	34.9 ^a	7.5
1998	10.5	/	1.32	/	/	/

ric potential (exception: MSW N _{opt} was	s lower at the drier end).
--	----------------------------

T N_{opt} at FC (pF2.5); amended plots followed the same OC-order. NT N_{min} generally displayed the lowest values for FC, WP & PAW. NT N_{opt} showed no change at WP (compared to CNT N_{min}) but was her than some amended plots at FC.

SWS N_{opt} was most effective in increasing water retention and PAW, W N_{opt} was least effective.

Conclusions

Perspectives

Acknowledgements

We thank Lydia Paetsch (TUM) and Dr. Remigio Paradelo (INRA) for providing additional data. This work was granted by ADEME within the Pro-Extern project.

References

- >3 composts and a manure **increased OC** at different rates and **reduced BD**; the plastic limits shifted in amended plots.
- >Addition of N or EOM+N increased water retention capacity of soils.
- >Increased total porosity and large-pore volume indicate improved aeration conditions in amended soils.
- >OC derived from EOM induced **aggregation** (creating inter- and intra-aggregate pores) and increased surface area: both factors affect water retention.
- \geq Compared with CNT N_{min} EOM addition increased water retention at FC & WP, CNT N_{opt} only at FC, not at WP.
- >GSW and BIO decompose slowly, their effect on OC and related properties is long-lasting / stable; **MSW** contained more labile components, which may explain its smaller impact on OC and especially water retention.
- \geq The effect of EOM on PAW appears to be linked to the **quality of EOM**.
- \geq Quantification of the 'non-nitrogen' yield benefit of the different composts. Evaluate the quality of composts / manure used in regard to soil physical properties and plant growth and yield (Fig. 5).

Atterberg, A. 1911. Über die physikalische Bodenuntersuchung und über die Plastizität der Tone. Internationale Mitteilungen für Bodenkunde 1:10-43. Foley B.J., Cooperband L.R. 2002. Paper mill residuals and compost effects on soil carbon and physical properties. J. Environ. Qual. 31:2086-2095. Khaleel R., Reddy K.R., Overcash M.R. 1981. Changes in soil physical-properties due to organic waste applications - review. J. Environ. Qual. 10:133-141. Rawls W.J., Pachepsky Y.A., Ritchie J.C., Sobecki T.M., Bloodworth H. 2003. Effect of soil organic carbon on soil water retention. Geoderma 116:61-76.